×

PSMN8R5-100ESF

NextPower 100 V, 8.8 mΩ N-channel MOSFET in I2PAK package

NextPower 100 V standard level gate drive MOSFET. Qualified to 175 °C and recommended for industrial & consumer applications.

This product has been discontinued, click here for discontinuation information and replacement parts.

Features and benefits

  • Optimised for fast switching, low spiking, high efficiency
  • Low QG x RDSon FOM for high efficiency switching applications
  • Low body diode losses (Qrr) and fast recovery (trr)
  • Strong avalanche energy rating (EAS)
  • Avalanche rated & 100% tested
  • Ha-free & RoHS compliant I2PAK low-height package

Applications

  • Synchronous rectification in AC-to-DC and DC-to-DC applications
  • Brushed & BLDC motor control
  • UPS & solar inverter
  • LED lighting
  • Battery protection
  • Full-bridge & half-bridge applications
  • Flyback & resonant topologies

Parametrics

Type number Package version Package name Product status Channel type Nr of transistors VDS [max] (V) RDSon [max] @ VGS = 10 V (mΩ) Tj [max] (°C) ID [max] (A) QGD [typ] (nC) QG(tot) [typ] @ VGS = 10 V (nC) Ptot [max] (W) Qr [typ] (nC) VGSth [typ] (V) Automotive qualified Ciss [typ] (pF) Coss [typ] (pF) Release date
PSMN8R5-100ESF SOT226 I2PAK End of life N 1 100 8.8 175 97 8.7 44.5 183 70 3.1 N 3181 551 2017-03-23

Package

All type numbers in the table below are discontinued. See the table Discontinuation information for more information.

Type number Orderable part number, (Ordering code (12NC)) Status Marking Package Package information Reflow-/Wave soldering Packing
PSMN8R5-100ESF PSMN8R5-100ESFQ
(934070403127)
Withdrawn / End-of-life PSMN8R5 100ESF SOT226
I2PAK
(SOT226)
SOT226 Not available

Environmental information

All type numbers in the table below are discontinued. See the table Discontinuation information for more information.

Type number Orderable part number Chemical content RoHS RHF-indicator
PSMN8R5-100ESF PSMN8R5-100ESFQ PSMN8R5-100ESF rohs rhf
Quality and reliability disclaimer

Documentation (16)

File name Title Type Date
PSMN8R5-100ESF NextPower 100 V, 8.8 mΩ N-channel MOSFET in I2PAK package Data sheet 2018-03-29
AN10273 Power MOSFET single-shot and repetitive avalanche ruggedness rating Application note 2022-06-20
AN11156 Using Power MOSFET Zth Curves Application note 2021-01-04
AN11158 Understanding power MOSFET data sheet parameters Application note 2020-07-06
AN11160 Designing RC Snubbers Application note 2023-02-03
AN11243 Failure signature of Electrical Overstress on Power MOSFETs Application note 2017-12-21
AN11261 RC Thermal Models Application note 2021-03-18
AN11599 Using power MOSFETs in parallel Application note 2016-07-13
AN90001 Designing in MOSFETs for safe and reliable gate-drive operation Application note 2017-05-05
SOT226 3D model for products with SOT226 package Design support 2017-06-30
Nexperia_package_poster Nexperia package poster Leaflet 2020-05-15
SOT226 plastic, single-ended package (I2PAK); 3 terminals; 2.54 mm pitch; 11 mm x 10 mm x 4.3 mm body Package information 2020-04-21
PSMN8R5-100ESF SPICE model PSMN8R5-100ESF SPICE model 2017-05-15
TN00008 Power MOSFET frequently asked questions and answers Technical note 2023-01-12
PSMN8R5-100ESF_RCthermal PSMN8R5-100ESF thermal design Thermal design 2017-05-15
PSMN8R5-100ESF Flow thermal model PSMN8R5-100ESF Thermal model 2017-05-15

Support

If you are in need of design/technical support, let us know and fill in the answer form we'll get back to you shortly.

Models

File name Title Type Date
PSMN8R5-100ESF SPICE model PSMN8R5-100ESF SPICE model 2017-05-15
PSMN8R5-100ESF_RCthermal PSMN8R5-100ESF thermal design Thermal design 2017-05-15
PSMN8R5-100ESF Flow thermal model PSMN8R5-100ESF Thermal model 2017-05-15
SOT226 3D model for products with SOT226 package Design support 2017-06-30

How does it work?

The interactive datasheets are based on the Nexperia MOSFET precision electrothermal models. With our interactive datasheets you can simply specify your own conditions interactively. Start by changing the values of the conditions. You can do this by using the sliders in the condition fields. By dragging the sliders you will see how the MOSFET will perform at the new conditions set.