Register once, drag and drop ECAD models into your CAD tool and speed up your design.
Click here for more information74LVC1G125GF
Bus buffer/line driver; 3-state
The 74LVC1G125 is a single buffer/line driver with 3-state output. Inputs can be driven from either 3.3 V or 5 V devices. This feature allows the use of these devices as translators in mixed 3.3 V and 5 V environments.
Schmitt-trigger action at all inputs makes the circuit tolerant of slower input rise and fall times.
This device is fully specified for partial power down applications using IOFF. The IOFF circuitry disables the output, preventing the potentially damaging backflow current through the device when it is powered down.
Features and benefits
Wide supply voltage range from 1.65 V to 5.5 V
Overvoltage tolerant inputs to 5.5 V
High noise immunity
CMOS low power consumption
IOFF circuitry provides partial Power-down mode operation
±24 mA output drive (VCC = 3.0 V)
Latch-up performance exceeds 250 mA
Direct interface with TTL levels
Complies with JEDEC standards:
JESD8-7 (1.65 V to 1.95 V)
JESD8-5 (2.3 V to 2.7 V)
JESD8C (2.7 V to 3.6 V)
JESD36 (4.5 V to 5.5 V)
ESD protection:
HBM: ANSI/ESDA/JEDEC JS-001 class 2 exceeds 2000 V
CDM: ANSI/ESDA/JEDEC JS-002 class C3 exceeds 1000 V
Multiple package options
Specified from -40 °C to +85 °C and -40 °C to +125 °C
Parametrics
Type number | Package name |
---|---|
74LVC1G125GF
|
XSON6 |
PCB Symbol, Footprint and 3D Model
Model Name | Description |
---|---|
|
Package
All type numbers in the table below are discontinued.
Type number | Orderable part number, (Ordering code (12NC)) | Status | Marking | Package | Package information | Reflow-/Wave soldering | Packing |
---|---|---|---|---|---|---|---|
74LVC1G125GF
|
74LVC1G125GF,132 (935282409132) |
Withdrawn / End-of-life | VM |
XSON6 (SOT891) |
SOT891 |
REFLOW_BG-BD-1
|
SOT891_132 |
Environmental information
All type numbers in the table below are discontinued.
Type number | Orderable part number | Chemical content | RoHS | RHF-indicator |
---|---|---|---|---|
74LVC1G125GF
|
74LVC1G125GF,132 | 74LVC1G125GF |
Series
Documentation (11)
File name | Title | Type | Date |
---|---|---|---|
74LVC1G125 | Bus buffer/line driver; 3-state | Data sheet | 2024-09-03 |
AN10161 | PicoGate Logic footprints | Application note | 2002-10-29 |
AN11009 | Pin FMEA for LVC family | Application note | 2019-01-09 |
Nexperia_document_guide_MiniLogic_MicroPak_201808 | MicroPak leadless logic portfolio guide | Brochure | 2018-09-03 |
SOT891 | 3D model for products with SOT891 package | Design support | 2019-10-03 |
lvc1g125 | 74LVC1G125 IBIS model | IBIS model | 2014-10-20 |
Nexperia_package_poster | Nexperia package poster | Leaflet | 2020-05-15 |
DFN1010-6_SOT891_mk | plastic, extremely thin small outline package; 6 terminals; 0.55 mm pitch; 1 mm x 1 mm x 0.5 mm body | Marcom graphics | 2017-01-28 |
SOT891 | plastic, leadless extremely thin small outline package; 6 terminals; 0.35 mm pitch; 1 mm x 1 mm x 0.5 mm body | Package information | 2020-04-21 |
REFLOW_BG-BD-1 | Reflow soldering profile | Reflow soldering | 2021-04-06 |
MAR_SOT891 | MAR_SOT891 Topmark | Top marking | 2013-06-03 |
Support
If you are in need of design/technical support, let us know and fill in the answer form we'll get back to you shortly.
PCB Symbol, Footprint and 3D Model
Model Name | Description |
---|---|
|
Ordering, pricing & availability
Type number | Orderable part number | Ordering code (12NC) | Status | Packing | Packing Quantity | Buy online |
---|
Sample
As a Nexperia customer you can order samples via our sales organization.
If you do not have a direct account with Nexperia our network of global and regional distributors is available and equipped to support you with Nexperia samples. Check out the list of official distributors.
How does it work?
The interactive datasheets are based on the Nexperia MOSFET precision electrothermal models. With our interactive datasheets you can simply specify your own conditions interactively. Start by changing the values of the conditions. You can do this by using the sliders in the condition fields. By dragging the sliders you will see how the MOSFET will perform at the new conditions set.